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A class of boundary-value problems of the dynamic theory of elasticity, which has not been studied to any great extent, is 
investigated. In these problems all the components of the displacement vector and the stress vector are specified on part of the 
boundary of the body (nothing is known about the components of these fields on the remaining part of the boundary). A uniqueness 
theorem is proved. The problem is investigated by reducing the boundary-value problem to a system of Fredholm integral equations 
of the first kind with smooth kernels. A scheme for the numerical determination of the unknown fields is proposed, based on a 
combination of the boundary-element method and the Tikhonov regularization method. A number of model examples in 
establishing the wave fields for an anisotropic body are considered. © 2000 Elsevier Science Ltd. All rights reserved. 

As is well known, for a body, bounded by a surface S, in the classical dynamic theory of elasticity, there 
are three main types of boundary-value problems for which theorems of existence and uniqueness have 
been proved [1]. The development of a procedure for establishing the wave fields inside elastic bodies 
based on measured boundary wave fields leads to new formulations of the boundary-value problems 
in the dynamic theory of elasticity. The most important one is the boundary-value problem in which 
all the components of the displacement vector and all the components of the stress vector are specified 
on part of the boundary St C S. Boundary-value problems of this type arise when investigating inverse 
boundary-value problems of the theory of elasticity, related to determining the boundary displacement 
and stress fields on a part $2 = S/S1 of the elastic body inaccessible for direct observation, and also 
when establishing the stress and displacement fields inside the body from the specified (measured) 
displacement field on the load-free part of the boundary [2-5]. Note that problems of uniqueness, 
correctness and the construction of algorithms for establishing the unknown fields are extremely 
important aspects when investigating such boundary-value problems. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We will assume that an elastic body Vis bounded by a smooth surface S, S = $1 t2 $2, where the region 
V and its boundary S satisfy the following conditions: 

(a) Visa  bounded region, which is a combination of regions each of which is a star with respect to 
a certain sphere; 

(b) the surface S can be split into a finite number of parts Ek, each of which can be projected uniquely 
onto some coordinate plane using a continuously differentiable mapping, defined in a closed region 
gk. 

The boundary-value problem of establishing the oscillations of an isotropic body V with frequency 
is described by tlhe following system of equations [1] 

Lu = t~ittuk.ti + p ~ 2 u  i = 0, i = 1,2,3 (1.1) 

and the boundary conditions on $1 

u, Is, = "io, t~ = c~mu~.t,ti Is, =/;'i, i = 1,2,3 (1.2) 

where Cijkl are the components of the elastic-constant tensor, which satisfy the usual requirements of 
being positive definite and symmetrical, and nj are the components of the unique vector of the outward 
normal to the surface S. On the part of the boundary $2 neither the type of boundary conditions nor 
the distribution of the boundary values of the displacement and stress fields are known. It is required 
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to determine the boundary values of the displacement and stress vector on the boundary $2. Knowing 
the values of the boundary displacement and stress fields over the whole surface S, it is easy to calculate 
their values inside Vusing Somigliana's formulae [1]. 

Note that the formulation of boundary-value problem (1.1), (1.2) is not the traditional one in 
mathematical physics for elliptic-type equations and requires an investigation. 

2. R E D U C T I O N  TO A CAUCHY P R O B L E M  

We will show that boundary-value problem (1.1), (1.2) can easily be reduced to a Cauchy problem for 
an elliptic operator of the theory of elasticity. Suppose x0 E Si is an internal point of $1. We will introduce 
a local system of coordinates with centre at x0 - (sl, s2, n), where sl and s2 are directed along the lines 
of principal curvature, and n is in the direction of the outward normal to S1. Then, from boundary 
conditions (1.2), taking into account the fact that 

<3 <3 <3 
~x.i = rol l  --+Os I mgi- --+#ii¢)s 2 " ~#l 

we obtain 

- ~llk 
tti [SI = lli(l '  COUtIItIj ~ IS i = Pio 

3UIo ~Uko 
Pio = Pi - ciiklmllni ~ -- ciiktm2lnj ~s"-'~-' i=  1,2,3 

(2.1) 

In view of the fact that the elastic energy is positive definite, system (2.1) is uniquely solvable with respect 
to OUk/an, and relations (2.1) reduce to the form 

~lli -I 
"i Is. = ui0> ~ Is, = vio, vi0 = (cijkt,ltni) Pio (2.2) 

Hence, the initial boundary-value problem (1.1), (1.2) reduces to Cauchy problem (2.2) for system 
(1.1). We know that this problem is ill-posed for one elliptic-type equation and is not locally solvable 
[6]. Problem (1.1), (1.2) possesses the same property, but, using discussions similar to those used to 
prove Holmgren's theorem [6], we can establish the uniqueness of the solution of problem (1.1), (1.2). 

3. U N I Q U E N E S S  OF T H E O R E M  

Theorem. Suppose a solution ui E C2(V) of problem (1.1), (1.2) exists. Then, it is unique in this class. 
To prove this it is sufficient to how that ui = 0 inside the region Vwhen Uio = Pi = 0 by virtue of the 

linearity of the problem. We will introduce an arbitrary piecewise-smooth surface So = S7 LJ ST which 
cuts from V a part V0, where S l  C S1 and S~ inside V. In addition, we will introduce a set of vector- 
functions v(im! which are solutions of the the following uniform boundary-value problems. 

Lv ( '~=0,  x e V  o 

~V (m) 
• (m}  

v, Iy~ = O, ciiktn; ~ IS + = Qiaim 
• " " o x j  " l  

where Qi is an arbitrary polynomial on S~-. 
Using Gauss' theorem and the boundary conditions for u i and v~.~! we calculate the difference 

[ ~ ( ~.~) <,,,i 0 ( Ov ¢''~'~ ] (L"'v<'" ')-(",Lv<'" ')  = S [~t.co<, <-~~xl) v, - ~ l " i - , .  ,~ 'k  /,.ldv= 
,,,, a , , t  " ) ' ]  

7¢ ,,,,, + r ] 
~E--DL-k l , i , f  lds -- s ,,,-L<.<,,, j = s =o 

So S~ 
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Hence since Qi(x)  is arbitrary it follows that urn(x) [s~- = 0, and since S] ~ is arbitrary we have urn(x) =- 0 
in V 0, which proves the theorem. 

R e m a r k  1. The uniqueness theorem remains true for a non-uniform medium with cijk(x) E C2(V). 

4. C O N S T R U C T I O N  OF T H E  S O L U T I O N  

Since problem (1.1), (1.2) is not a classical boundary-value problem, we cannot use the present well- 
developed finite-element method to solve it. The first stage in the procedure for establishing the 
displacement and stress fields inside the region V is to determine the boundary fields on the part of 
the boundary $2. One of the most effective methods of finding the relation between the known and 
unknown boundary values of the displacements and stresses is the method of boundary integral equations 
and the boundary-element method based on it [7]. In view of the lack of an explicit representation of 
the fundamental solutions for an isotropic medium, the classical approach, based on potential theory, 
is ineffective, but it is possible to formulate an operator relation between the boundary values of the 
displacement and stress vectors, based on the use of boundary integral equations of the first kind with 
smooth exponential-type kernels [8]. As in [8] we can construct a system of operator equations, on the 
basis of which we can formulate a system of boundary integral equations of the first kind with smooth 
kernels for bounda:ry-value problem (1.1), (1.2) in the following form 

I " X~,~)(.~,m.,,,(.~)aSx qo(m, K,,,/(a. mr,,, (.~ )dS,  - j = 
5', S 2 

c, = (cq, c~ 2 ) ~ C ~- 

j = 1,2,3 (4.1) 

where 

K~;Ii~C.~. a )  = e,,,,(a,. % .  Z., ) * i ( x '  a )  

( ~_ ) . _ a %  ( x,  cO 
K,q (.~, c~) - c~.,mlPh.(C~ I ,Or 2 , ~'i )hi t-)x, 

~i(x,C~) = exp(i(cqxj + cx2x 2 + ~j (C~j ,t~ 2 )x 3 )) 

I " '  
• . - K , ,  V ( . ~ , o 0 p , , , ( . r ) d S ,  

.~,l SI 

(4.2) 

Here hj(al, a2) = o~3j(al, or2) ( j  = 1, 2, 3) are the roots of Christoffel's equation 

del A = (), A = {Aik }, Aik = cii~.lO~./O~ t - po)2~i,k 

which satisfy the condition Imhj (oq, a2) > 0 as a~ + ot 2 --> 0% while Pro(a1, a2, h i )  are fourth-order 
polynomials, which are the cofactors of the elements of the first row of matrixA. 

The concrete form of kernels (4.2) of the integral operators in (4.1) were derived previously in 
[9-11] for isotropic and various anisotropic materials. Note that the kernels are piecewise-smooth 
functions, unlike the classical boundary integral equations, the kernels of which have singularities. 

System (4.1) is a :system of Fredholm integral equations of the first kind with smooth kernels with 
respect to the unknown boundary fields, which is equivalent to the initial boundary-value problem. These 
equation are a consequence of the reciprocity theorem in the theory of elasticity for the true fields and 
non-uniform plane ,Naves in an anisotropic medium. System (4.1) generates a completely continuous 
operator, and the procedure for inverting it is an ill-posed problem and requires regularization in some 
form [12]. In this paper we find the unknown functions by a combination of the boundary-element 
method and the Tikhonov regularization method, as is done for classical boundary-value problems of 
the dynamic theory of elasticity in the isotropic case [9] and the anisotropic case [10,11]. 

R e m a r k  2. As is well known, for ill-posed problem (1.1), (1.2), generally speaking, there is no 
continuous dependence on the data of the problem Uio and Pi but, if we are seeking a solution in the 
class of uniformly bounded functions in the region V, there will be a continuous dependence [13]. 
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5. A M O D E L  E X A M P L E  

We will consider, as a model example, the simplest problem of the type being investigated, namely, the 
problem of antiplane deformation of an orthotropic body. 
establishing the displacement field in this case has the form 

C66U.I I + C441t.33 + P 0~2ll = 0 

x 3 = a  3, u=f ( I ) (x  I), u.3=f(2r(x I), 

The boundary-value problem of 

(5.1) 

Ixl I~at 

We will establish the field in the region S = [-aa,  al] × [a3, a3]. The solution of problem (5.1) is easily 
constructed by the method of separation of variables and can be represented in the form 

U(Xl,X3) = Uo(Xl,X3)+UI(XI,X3)+U2(XI,X3) (5.2) 

where 

, . ( I ) ,  uo(xs,x3) = ]0 t-~:l )c°sk(x3 - a3) + f~12)(xl ) sin k(x 3 - a 3) 
k 

M 
'q(x1,x:~)= E W(xl,x3,"), u~_(xl,x3)= ~ W(xl,x3,") 

n=[ n=M+l 

W(XI.A.3.I1)=Qf~,(I)eos~n(X3 _ a 3 )  + f~ (2 ) s in  Ptn(X3p-n - a 3 ) ]  sin ~'' 'x. 

f(i)(al )+ . f ° ) ( -a l )  fU)(at)  - fIi)(_al ) ~(i)(x .1o I ) = xl  + 
2a I 2a I 

f,;(i) = 1 'i ( f ( i ) ( X l ) -  foi)(xl ))sin L,iXld~'l ; i = 1,2 
~ll -a I 

~., =rrt__t.t, p. ,~=l  (k2-~'2"), n = l , 2 ,  .... k 2=pc°2 ,  v =  c66 
a I v c44 c44 

Note the following features of solution (5.2). 
1 °. A solution of the form (5.2) exists for any values of the wave number k, unlike classical boundary- 

value problems for which there is a denumerable spectrum of resonance values of k. 
2 °. The term Uo(Xl, x3) is the rod solution, for each fixed xl ~ ( - a l ,  al) it is solution of the Cauchy 

problem for a semi-infinite rod U0,u = 0. 
3 °. In the representation for ul(xl,  x3) the upper limit of M is chosen from the condition 

~,M < k < XM+I 

and Ul(Xl, x3) is the sum of certain natural forms of oscillation for a rectangle. 
4 °. The expression for ul(xl,  x3) is, generally speaking, a diverging series, which is due to the general 

result that there is no global solution. 
At the same time, by requiring the solution to be bounded, we obtain that it is necessary to confine 

ourselves to a finite number of terms for u2(xl, x3) in the representation 

u(xl,.t.~ ) = u0(xl, x 3 ) + u I (x I , x 3 ) 

6. N U M E R I C A L  R E A L I Z A T I O N  OF THE SYSTEM OF 
B O U N D A R Y  I N T E G R A L  E Q U A T I O N S  

As examples, which illustrate the effectiveness of the system of boundary integral equations (4.1) for 
the problem of establishing the boundary fields (1.1), (1.2), we will consider the plane deformation of 
an orthotropic elastic body. We will assume that the orthotropic axes coincide with the coordinate axes, 
U 1 = Ul(X1, X3) , U 3 = U3(XI, X3), U 2 = 0. Austenite steels possess orthotropic properties [11], as well as 
many composite materials within the framework of the concept of effective moduli. 
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Consider the bo~andary-value problem of the oscillations of an orthotropic elastic medium, occupying 
a region S, bounded by a piecewise-smooth curve L = L1 U L2. We will assume that the components 
of the displacement vector and the stress vector 

u~ I~, = u~o, CYiin i It., = p~, i = 1,3 (6.1) 

are specified on the contour L1, while the components ui IL2 and ti = ~rqn~ It 2 (i = 1, 3) are unknown 
o n  L 2. In this case, in the same way as the approach described, we can formulate a system of operator 
relations, which connect the known and unknown values of the boundary fields. 

In dimensionless form system (4.1) becomes 

~([3,, +13,,. (13~))V~ (k13,, +kl%.,.(p~ ))+ 

+p~(13,,+1~3.,(13 ))V.~(kl~,+k133.,(l~ )) = o, s = L2 
(6.2) 

where 

P,(13,,133):  ,513  +13  -l, +' ;)13,133 

V~(k~j,k~3) = f {c~j.~ +ci~t,~ -ik[(~jniyl + 
L 

+1~3n3~/5 )u I + (l~ln3y 7 + ~3nlY5 )u 3 ] } e ik(~'x) dL ,  

V3(k~l ,k~3)  = I {~31tll + (~33tt3 - ik[(~ln3Y5 + 
L 

-I-~3711Y 7 )lt I -I- (~11/1"~5 + ~3t13 )/¢3 ]} eik(13"~) dLx 

k = ~  p - ~ c 3 3 ,  "~1 =c11 /c33  , '~5 =c44]c33  o Y 7 = C l 3 ] C 3 3  

~ 3 , . ( ~ l ) = i [ A l ( ~ l ) - i ( - I ) " ( A 2 ( ~ l ) ) l / 2 ]  I/z,  s =  1.2 

A~ (13m) = (2y5)-~ l ( Y ,  - 2 ,5¥7 - )13  - + 

Z 2 (~ , )  = - (A,  (13, ) f  + (Ys) - '  (I - y , ~  )(I - Ts l~  ) 

The kernels of the integral operators in (6.2) depend on the roots of the characteristic polynomial 
of the operator of the orthotropic theory of elasticity 133~(131) (s = 1, 2). 

In Fig. 1 we show curves of 133~(13a) for austenite steel with the following material constants [11] 

p = 0 .812  x 10 a k g / m  3 

ell = 0.2627, ct3 = 0.145, c33 = 0.216, c44 = 0.129 x 10 ~2 N/m 2 

Note that for the chosen material for small [31 the roots 133s(131) are real; as 131 increases one of the 
roots becomes pure imaginary on a certain part; further, beginning at a certain 131., the roots 13~(13~) 
(s = 1, 2) are complex conjugate. 

As examples, which illustrate the reconstruction of the boundary fields, we will consider two plane 
problems for square and elliptical regions of orthotropic material with the above.elasticity constants. 

! 
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Fig. 1 
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1. The problem for a square 

S = I0, a l x [0, a]  

On 

L~ = { {.r z = O,.r 3 ~ [0, a] } w {x 3 = a, x 1 ~ [0, a] } t3 {x I = a, x 3 ~ [0, a] } } 

we know the functions Uio and Pi (i= 1, 3) from (6.1), corresponding to the displacement field 

ul(x I,x.~) = R e l - ~ Z ( x z , x 3 ) } ,  u3(xi,x3) = Re{PiZ(xl .x3)} 

Z(xl,x 3) =exp[ik([31xj +[~3x3)], [33 =~3v([~l), ~ = ~(131,~3), i=1 ,3  
(6.3) 

and the stress field ~rq(xl,x3), (i , j  = 1, 3) calculated using the generalized Hooke's  law for an orthotropic 
material. 

The quantities which are to be established on 

L, = {.q ~ IO, a l ;  x.~ = o} 

are ui(x1, 0), oi3(x1, 0) (i = 1, 3). In Fig. 2(a) for 

(1=1. ka=l .5 ,  kiwi=2, k~3=2.4823 

we show graphs of the functions Ui(X1, 0) and U3(X1, 0) on the boundary La, the continuous curves 
correspond to the exact solution (6.3) and the dashed curves correspond to values established 
numerically. In Fig. 2(b) we show similar curves for otis(x1, 0) and O'33(X1, 0). The calculations were carried 
out by splitting the boundary L2 into 20 elements. The results of the calculations show that the 
reconstructed fields in the problem considered are quite accurate over the range of variation of the 
parameter  ka from 0.1 to 5 (the error is less than 10%). 

2. The problem for an ellipse 

(xf - R) 2 (x~ - R) 2 
S = { q , x ~  I - - a ~  + b2 ~< l} 

When a = 0.5 and b = 0.3, we will take as the test reconstructed fields the components defined by 
relations (6.3) in the case when 

ka = 0.9, k[~ t = 2, k[~ 3 = -1 ,4964+  1.0172i 

We investigated the effectiveness o f t h e  proposed method ofreconstruct ing the elastic fields on the 
boundary 
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¢- 

L 2={.q = R + a c o s %  x 3=R+bsin~g,  ~el0,~g0l} 

as a function of the number of boundary elements N and as a function of the relative length of the arc 
of the boundary 

L I = I x  I = R + a c o s ~ g ,  x 3 = R + b s i n W ,  ~[~go,2r~]} 

accessible for measurements of the characteristics of the elastic fields. 
In Fig. 3 the dashed curves represent graphs of the relative errors ~ (curve 1) and e (curve 2) as a 

function of the number of boundary elements N 

max I , ,  I 

N max l c,, - o,N j max J t3, - o r J 
£=  +E~_, El = ~2-- 

max I~,,  I max I o ,  I 

when reconstructing the components of the displacement and stress vectors on the boundary L 2 with 
• • N N N t~ o = ~ /2  (ui ,  tYn, ty~ Is the accurate soluUon, u i ,  ~n ,  ~r~ are the reconstructed values and the maximum 

is taken on the boundary L2). The results of the calculations show that there is an optimum value of 
the number of elements Nopt, which gives the minimum reconstruction error (in this case Nopt = 10), 
which corresponds to the results obtained in [5]. Note that when the number of elements N is increased 
both the errors increase monotonically, which is due to the ill-posed nature of the initial problem 
(1.1), (1.2). 

In addition, we investigated the effectiveness of the proposed method of reconstructing the elastic 
fields as a function of the angle 40- The unknowns are the components of the displacement and stress 
vectors on the boundary L 2. In Fig. 3 the continuous curves represent graphs of the relative errors 8 
(curve 1) and e (curve 2) when reconstructing the components of the displacement and stress vectors 
on the boundary L 2 for t~0 ~ [~/8, 'rr]. In this case we used the concept of constant boundary elements, 
while the central angle with aperture ~ = ~/40 corresponds to one element. 

A number of calculations on reconstructing the elastic fields confirm that they are determined fairly 
accurately when the length of the part L 1 exceeds the length of the part L2 by a factor of 3 or more; 
the reconstruction accuracy falls when there is a relative increase in the length of the part L 2. 

As can be seen :from Fig. 4, in which for t~ 0 = 5~/8 we show graphs of the functions Ul [L 2 
(curves 1) and u 3 [z2, (curves 2), where the small circles denote the reconstructed values, the greatest 
error in this numerical method arises at the ends of the line L2; inside this range the error in 
reconstructing the field does not exceed 12%. The jumps in the required values at the edges are 
characteristic of TiI~onov's regularization method in the class of summed functions when solving 
Fredholm integral equations of the first kind with smooth kernels. 

These examples of the reconstruction of the elastic fields confirm that the proposed numerical 
reconstruction algorithm is quite effective. 

This research was partially supported by the Russian Foundation for Basic Research (00-15-96087, 
00-01-00545). 
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